

Comment utiliser le nettoyage des données pour explorer, rendre compte d'un potentiel scientifique : le langage R

Hélène Mathian, Hughes Pécout

Cycle du traitement de la donnée

Cycle/étapes d'analyse de la donnée (Mathian, Sanders)

Cycle science de la donnée (Trousse & al.)

Nettoyage ⇔ Qualité => cohérence

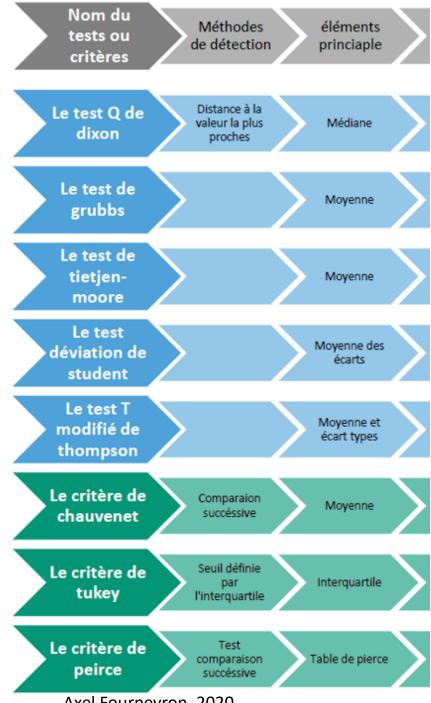
- « Le nettoyage de données est l'opération de détection et de correction d'erreurs présentes sur des données stockées dans des bases de données ou dans des fichiers. »
- Nettoyage est
 - une étape d'amélioration de la qualité
 - Mais c'est une étape de compréhension de la donnée,
- Passe par une boucle autour de

exploration <-> nettoyage<-> vérification

- Nettoyer, corriger ... nécessite souvent de définir un point de vue!
 => notion d'incohérence
 - « La qualité des données au lieu de l'incohérence » <u>lien</u>
- Différencier la
 - ▶ cohérence « externe/forme » -> considérations techniques liées au process 🛭
 - et la cohérence « interne/fond » -> considérations sémantiques/expertises..

Explorer / Nettoyer

- Diagnostic => explorer
 - Visualiser décrire (stat) -analyser
- **⇒** Nettoyer
- Adaptation
 - recoder
- ➤ Correction
- Corriger
- Compléter -> estimer....


Exemples de méthodes sur la base de cohérence « technique »

Analyses de colonnes (une à	Indicateurs	TDQ	DC	DP
une)				
	Nombre total des valeurs	X	X	X
	Nombre de valeurs nulles	X	X	X
Statistiques simples	Nombre de valeurs distinctes	X	X	X
	Nombre de valeurs doubles	X	X	X
	Table de fréquence	X		
	Longueur maximale des chaînes	X	X	X
Statistiques sur les chaînes	Longueur minimale des chaînes	X	X	X
	Longueur moyenne des chaînes	X	X	X
	Valeur maximale des numériques	X	X	
	Valeur minimale des numériques	X	X	
Statistiques sur les numériques	Moyenne des numériques	X	X	
	Écart type des numériques	X	X	
Ctatiationes and los dates	Fréquence des années	X	X	
Statistiques sur les dates	Motif de fréquence de Date	X		
Format des chaînes	Motif de fréquence	X		
Nature des chaînes				
Langue des chaînes				
Nature de la langue des chaînes (La-			X	
tin, Arabe)				
Nombre de chaînes valides syn-				
taxique				
Nombre de chaînes valides séman-				
tique				

TDQ= Talend Data Quality 8
DC= DataCleaner 9
DP= DatirisProfiler 10

Source: Qualité contextuelle des données : détection et nettoyage guidés par la sémantique des données. able 2.11 – Tableau comparatif des différents outils de profilage (analyse de colonnes)

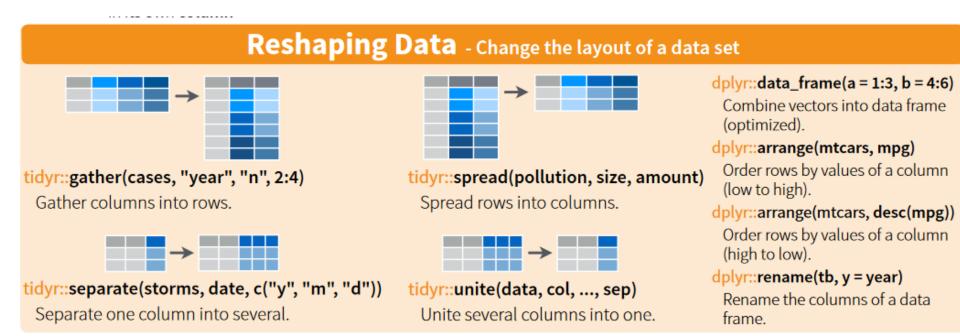
Détection de valeurs aberrantes «outliers»

Axel Fourneyron, 2020

La question des données manquantes

• Systématique (corrélée à un facteur ?) ou aléatoire ?

Quelques méthodes automatiques de reconstruction


Méthode	Commentaire	Mécanique/ Sémantique
Moyenne / médiane	Diminue la variabilité	M
Par tirage conditionnel	 1- plus proches voisins (moyenne des k plus proches voisins sur les p variables renseignées) 2- Classification sur p mêmes variables renseignées et moyenne conditionnelles par classe 3- modèle de régression sur p variables (valeurs prédites) 	1-M 2-S
Par moyenne partielle	Avoir une variable groupe ayant un sens fort => utiliser les mêmes méthodes mais conditionnées par le groupe	

Caractéristiques et TP

Dimensions	Aspect	Méthode	Exemple
Statistique	Distribution	outliers	MetropLyon
	Sémantique		DansMaRue
	Données manquantes		X
Cohérence temporelle		Explorer les cycles	DansMaRue
Cohérence spatiale		Explorer les niveaux	DansMaRue
Cohérence sémantique		Analyse des sentiments	TrumpTweet

Manipulation des données: déployer et ranger dplyr & tidyr

Data Wrangling with dplyr and tidyr Cheat Sheet

Manipulation des données: déployer et ranger dplyr & tidyr

Subset Observations (Rows)

dplyr::filter(iris, Sepal.Length > 7)

Extract rows that meet logical criteria.

dplyr::distinct(iris)

Remove duplicate rows.

dplyr::sample_frac(iris, 0.5, replace = TRUE)

Randomly select fraction of rows.

dplyr::sample_n(iris, 10, replace = TRUE)

Randomly select n rows.

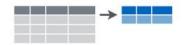
dplyr::slice(iris, 10:15)

Select rows by position.

dplyr::top_n(storms, 2, date)

Select and order top n entries (by group if grouped data).

Subset Variables (Columns)



dplyr::select(iris, Sepal.Width, Petal.Length, Species)

Select columns by name or helper function.

Manipulation des données: déployer et ranger dplvr & tidvr

Summarise Data

dplyr::summarise(iris, avg = mean(Sepal.Length))

Summarise data into single row of values.

dplyr::summarise_each(iris, funs(mean))

Apply summary function to each column.

dplyr::count(iris, Species, wt = Sepal.Length)

Count number of rows with each unique value of variable (with or without weights).

Summarise uses summary functions, functions that take a vector of values and return a single value, such as:

dplyr::first

First value of a vector.

dplyr::last

Last value of a vector.

dplyr::nth

Nth value of a vector.

dplyr::n

of values in a vector.

dplyr::n_distinct

of distinct values in a vector.

IQR

IQR of a vector.

min

Minimum value in a vector.

max

Maximum value in a vector.

mean

Mean value of a vector.

median

Median value of a vector.

var

Variance of a vector.

sd

Standard deviation of a vector.

Data Wrangling with dplyr and tidyr

Cheat Sheet

Make New Variables

dplyr::mutate(iris, sepal = Sepal.Length + Sepal. Width)

Compute and append one or more new columns.

dplyr::mutate_each(iris, funs(min_rank))

Apply window function to each column.

dplyr::transmute(iris, sepal = Sepal.Length + Sepal. Width)

Compute one or more new columns. Drop original columns.

Mutate uses window functions, functions that take a vector of values and return another vector of values, such as:

dplyr::lead

Copy with values shifted by 1.

dplyr::lag

Copy with values lagged by 1.

dplyr::dense_rank

Ranks with no gaps.

dplyr::min_rank

Ranks. Ties get min rank.

dplyr::percent_rank

Ranks rescaled to [0, 1].

dplyr::row_number

Ranks. Ties got to first value.

dplvr::ntile

Bin vector into n buckets.

dplyr::between

Are values between a and b?

dplyr::cume_dist

dplvr::cumall

Cumulative all

dplyr::cumany

Cumulative any

dplyr::cummean

Cumulative **mean**

cumsum

Cumulative **sum**

cummax

Cumulative **max**

cummin

Cumulative min

cumprod

Cumulative **prod**

pmax

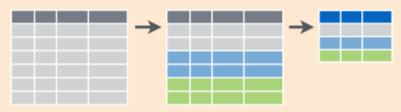
Element-wise **max**

pmin

Manipulation des données: dplyr & tidyr

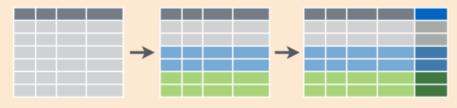
Group Data

dplyr::group_by(iris, Species)


Group data into rows with the same value of Species.

dplyr::ungroup(iris)

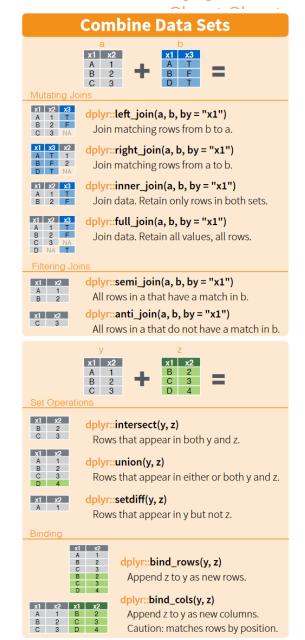
Remove grouping information from data frame.


iris %>% group_by(Species) %>% summarise(...)

Compute separate summary row for each group.

iris %>% group_by(Species) %>% mutate(...)

Compute new variables by group.

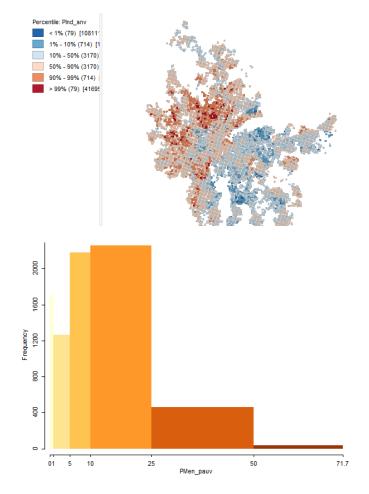


retudio com

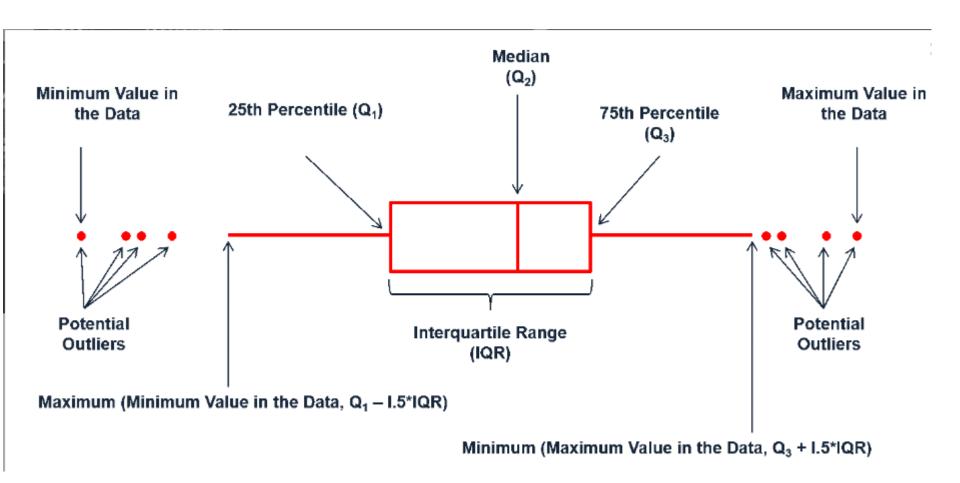
doutoole-inetall_mithub/"retudio/EDAMD"\ for data cote

Loarn moi

Data Wrangling with dplyr and tidyr

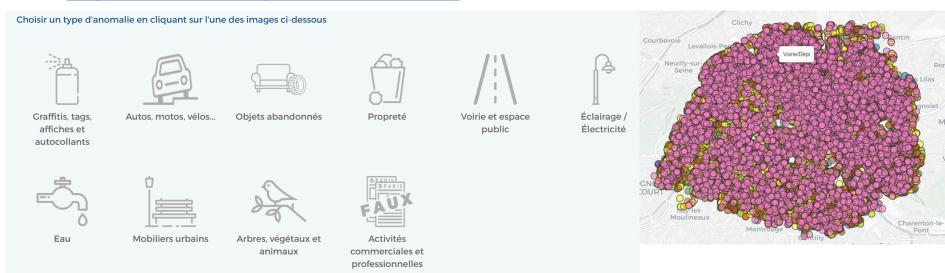


Métropole de Lyon – ségrégation socio-spatiale


• À l'échelon des mailles de 200m (Carro200m2015GLyonW.shp)

Détecter les outliers

Depcom	Code communal
Ind	Nombre d'individus du carreau
Men	Nombre de ménages du carreau
PMen_pauv	% de ménages pauvres (au seuil 60% de pauvreté)
PMen_1ind	% de ménages d'un seul individu
PMen_5ind	% de ménages de 5 individus ou plus
PMen_prop	% de ménages propriétaires
PMen_fmp	% de ménages monoparentaux
PMen_mais	% de ménages en maison
SurfLogMoy	Superficie moyenne des logements
PLog_av45	% de logements construits avant 1945
PLog_ap90	% de logements construits après 90
PLog_soc	% de logements sociaux
	moyenne par individu des niveaux de vie winsorisés
Ind_snvmoy	des individus
PInd_inf10	% d'individus demoins de 10 ans
PInd_11_17	% d'individus de 11 à 17 ans
PInd_18_24	% d'individus de 18 à 24 ans
PInd_80p	% d'individus de plus de 80 ans



Détection des outliers Les graphiques (1) « boxplot » ou « boite à moustache »

Données « Dans ma rue »

https://teleservices.paris.fr/dansmarue/

- données déclaratives- cadrées (saisie avec avec contraintes)
 Sémantique, temps, espace
- explorer:
 - Définir le cadre- de quoi ça parle
 - Qu'est ce qui pourrait m'intéresser... quel est l''intérêt ;o)?

Qui se cache derrière les tweets....

Today I officially declared my candidacy for President of the United States. Watch the video of my full speech-youtu.be/q_q61B-DyPk

9:15 PM · 16 juin 2015

- #1398 tweets entre le "2015-12-14 20:09:15 UTC" et le 2016-08-08 15:20:44 UTC"
- #élections on eu lieu le 8 novembre 2016 et il s'était déclaré candidat en juin 2015
- TP d'après <u>http://varianceexplained.org/r/trump-tweets/</u> thanks to David Robinson